CENSOR plastics recycling
Setting standards
CENSOR
Technology that pays off

Special features of plastics separation with the CENSOR process
ANDRITZ has developed a plastic sorting method that is characterized by high-performance separation, which is particularly suitable if the products have to be of high purity and whenever the waste plastic mix contains different shapes and sizes of particles.

Applications
- Post-consumer waste
- Industrial waste
- Production waste
- Technical plastics
- Films
- Bottles
- Carpets
- Fibers
- Plastics from the automotive industry

Benefits
Economical
- low fresh water requirement
- low space requirement
- simple operation
- low energy demand
- high availability

Process
- high selectivity
- clean products
- little loss of valuable materials

Ecological
- minimal waste water discharge
- high selectivity means maximum recovery

Technologically advanced
- proven modern machine technology
- ANDRITZ centrifuges of modular construction, manufactured in series

The most advanced separation technology for all applications
Plastics recycling has become much more specialized. The recycling aspects are being included more and more in the conception of new products. New, improved technologies have been developed in response to current concerns about the recycling of products at the end of their lifetime. These technologies now include the recycling of post-consumer carpets.

New applications have emerged for recycled plastics in all areas of plastics processing, such as film or profile extrusion, blow molding, and injection molding. However, the most important requirement in plastics recycling is product quality. Reliable specifications for MFI, specific density, modulus of elasticity, color, and so on must be provided to verify quality to potential customers.

Only pellets that meet these stringent demands will have a chance on the market in the long term. ANDRITZ centrifuge technology offers the means of meeting these high standards. It ensures constant outstanding quality of the regranulate.

CENSOR sorting for a standard feed rate of 4,400 lbs/h

02

03
The core unit of the process is the sorting centrifuge, which separates, washes, and dewater the products simultaneously.

The operating principle is shown in the schematic diagram. The commingled plastics, which are normally pressed in bales when they arrive at the recycler site, are reduced to a particle size of 15 mm, mixed with separation liquid (usually water) in a mixing tank, and then pumped to the centrifuge.

The centrifuge is partly filled with a separation liquid, which forms a liquid ring due to rotation at high speed. The plastics are fed axially into the centrifuge as a suspension and impinge on the surface of the revolving liquid ring. Here, intense turbulence results in deagglomeration of the individual plastic particles and largely frees them from adhering dirt.

Any air bubbles adhering to the surface of the particles are stripped off by the centrifugal force, which is especially important in view of the predominantly hydrophobic material. All particles with a density greater than the liquid are forced outward radially to the centrifuge bowl, while lighter components float upwards inwardly. This occurs in a very short time and with high selectivity in a centrifugal field creating forces over 1,000 times higher than in conventional processes. The particle shape and size are not significant here.

A screw conveyor rotates inside the centrifuge at a speed slightly different to that of the centrifuge bowl.

Counter-rotating screw flights are fitted to a screw body and transport the separated fractions to each of the conical ends of the centrifuge. There they are lifted up above the liquid ring and thus discharged after having been dewatered.

Counter-rotating screw flights are fitted to a screw body and transport the separated fractions to each of the conical ends of the centrifuge. There they are lifted up above the liquid ring and thus discharged after having been dewatered. Depending on the type of plastics to be separated, the purity achievable can be more than 99.9%, with very low valuable product losses.

The liquid fed into the centrifuge with the plastics is discharged through nozzles in the center part of the centrifuge, thereby keeping the liquid level constant. This liquid is recycled to be mixed with plastic again at the centrifuge inlet. At the same time, CENSOR removes any coarse impurities from the liquid under centrifugal force, which results in a relatively low waste load.

One machine combines several important functions:
- low fresh water consumption
- separation with high selectivity
- dewatering of the products
- high washing efficiency
- partial clarification of the circulating water
CENSOR is a highly selective process for obtaining plastic fractions of optimum purity. Systems tailored to almost any recycling problem are feasible by combining several process operations.

If separation liquids of different densities are used, several high-purity plastic fractions of varying density can be obtained by connecting several such separating operations in series. Various salt solutions are mainly used as separation liquid. As an example, this simplified schematic diagram shows how the components of post-consumer carpet are separated. Carpets are mostly composed of polyamide fibers (PA), polypropylene (PP) binders, and a backing of latex and calcium carbonate. The most valuable fraction is the PA (often 6/6 PA). The specific density of PA is close to 1.1 g/cm³, PP is lighter, with a density close to 0.92 g/cm³, and the mixture of latex and CaCO₃ is considerably heavier than PA. To recover the nylon fibers (PA), the carpets first have to be reduced in size to 5-6 mm particles (usually in a two-stage process) and then transported to a first CENSOR system that uses plain water as the separation liquid. In spite of the fact that the mixture consists of intertwined fibers, the high centrifugal force separates the PP into a light PP fraction and a heavy PA and latex fraction. The PP fraction is very clean and can be further processed.

The heavy fraction from the first stage is transported to a second CENSOR stage that uses separation liquid with a density of 1.18 g/cm³ (e.g. salt solution). The valuable, high-purity PA floating in this fraction is discharged as the light fraction and then sent to a dryer, extruder, or granulator, for example. Latex and CaCO₃ also sink here and form the heavy fraction in this stage.

In some cases, it makes sense to invert these two process steps.

Applications
As in this example, there are a multitude of applications where the CENSOR process can offer economic solutions. The high reliability, and hence availability, of the CENSOR system has been evidenced during practical operation at many installations for more than 15 years, especially for high-efficient plastics recycling within scope of the German packaging ordinance and the leading organization of the dual-disposal-system (DSD). The CENSOR technology allows separation and cleaning of plastics within a very wide range of applications. Plastics of similar density can also be separated more effectively due to the high selectivity of the process. The washing effect provides simultaneous cleaning with low water consumption.

Other applications are available for construction material waste (post-consumer carpets, cable scrap, and plastic cladding). In addition, CENSOR can be used to recycle car components (i.e. dashboards, cables, bumpers, gasoline) and for recycling of synthetic turf as well as electronic scrap.
CENSOR

Compact installation: technical data

<table>
<thead>
<tr>
<th>CENSOR type</th>
<th>Standard throughput(^1) (t/h)</th>
<th>Installed power (kVA)</th>
<th>Water consumption(^2) (l/h)</th>
<th>Circulating water (m(^3))</th>
<th>A(^3) (mm)</th>
<th>B(^3) (mm)</th>
<th>C(^3) (mm)</th>
<th>D(^3) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACZ 4-3</td>
<td>0.5</td>
<td>66</td>
<td>150</td>
<td>2</td>
<td>3,400</td>
<td>7,600</td>
<td>4,600</td>
<td>2,900</td>
</tr>
<tr>
<td>ACZ 6-3</td>
<td>1</td>
<td>92</td>
<td>200</td>
<td>2.5</td>
<td>3,700</td>
<td>7,800</td>
<td>4,800</td>
<td>3,300</td>
</tr>
<tr>
<td>ACZ 9-3</td>
<td>2</td>
<td>138</td>
<td>400</td>
<td>3.5</td>
<td>4,750</td>
<td>8,800</td>
<td>5,000</td>
<td>3,700</td>
</tr>
</tbody>
</table>

1) Plastic mixture, bulk weight approx. 100 g/l
2) Subject to normal contamination
3) Reference values, subject to change without notice

AFRICA
ANDRITZ Delkor (Pty.) Ltd.
Phone: +27 (11) 012 7300
Fax: +27 (86) 636 2122
separation.za@andritz.com

ASIA
ANDRITZ Singapore Pte. Ltd.
Phone: +65 (6512) 1800
Fax: +65 (6863) 4482
separation.sg@andritz.com

EUROPE
ANDRITZ SEPARATION GmbH
Phone: +49 (221) 9856 107
Fax: +49 (221) 9856 202
separation.de@andritz.com

NORTH AMERICA
ANDRITZ SEPARATION Inc.
Phone: +1 (817) 465 5611
Fax: +1 (817) 468 3961
separation.us@andritz.com

SOUTH AMERICA
ANDRITZ SEPARATION Ltda.
Phone: +55 (47) 3387 9103
Fax: +55 (47) 3387 9110
separation.bra@andritz.com

AUSTRALIA
ANDRITZ Pty. Ltd.
Phone: +61 (3) 8773 4888
Fax: +61 (3) 8773 4899
separation.au@andritz.com

CHINA
ANDRITZ (China) Ltd.
Phone: +86 (757) 6663 3419
Fax: +86 (757) 6663 3448
separation.cn@andritz.com

www.andritz.com

All data, information, statements, photographs, and graphic illustrations in this leaflet are without any obligation and raise no liabilities to or form part of any sales contracts of ANDRITZ AG or any affiliates for equipment and/or systems referred to herein. © ANDRITZ AG 2014. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws. ANDRITZ AG, Stattegger Strasse 18, 8045 Graz, Austria.