Reject systems for drum pulping
From trash to treasure
The challenge: Turning waste into cash

Every recycled fiber line needs a proper water-, sludge-, and reject treatment system in order to operate economically. The first and obvious goal is to minimize costs for resources (water, energy) and disposal. In addition, rejects are valuable and generate income, for example metals as raw materials and plastics as a source of energy. For this purpose, rejects from the recycled fiber process require optimum and properly adapted treatment. The process must be cost-efficient and simple, as well as fulfilling certain requirements to ensure that the rejects or their component parts can be utilized thermally (e.g. combustion or gasification), can be sold or re-used (e.g. after pelleting), or can be disposed of at minimum cost and effort. All this requires careful handling of the rejects and a thorough knowledge of the individual process steps. Major individual operations, such as shredding, metal and heavy particle separation, sludge dewatering, compacting, drying, and either pelletizing or combustion or gasification, have to be combined and arranged correctly to achieve maximum benefit depending on the final intended purpose.

The solution: ANDRITZ reject systems

Benefits
- Compliance with the legal requirements for protection of the environment, e.g. landfill directives
- Reduction of disposal and transportation costs
- Pre-treatment of rejects for fuel generation
- Reduction of greenhouse gas emissions (CO₂)
- Additional income from recycling of raw material (e.g. metals or plastic)
- Low-consistency rejects with a high content of heavy particles – typically coming from cleaning stages – need different treatment. The suspension is fed into a gravity sedimentation chamber. The heavy particles that settle are discharged by an inclined screw press applying highest shear forces. The low temperature level and long residence time ensure effective drying. Flexible use of low-grade energy (waste heat recovered from hot water or process back-end) ensures high filtrate quality and low maintenance. Low-consistency rejects with a high content of heavy particles – typically coming from cleaning stages – need different treatment. The suspension is fed into a gravity sedimentation chamber. The heavy particles that settle are discharged by an inclined screw press applying highest shear forces. The low temperature level and long residence time ensure effective drying. Flexible use of low-grade energy (waste heat recovered from hot water or process back-end) ensures high filtrate quality and low maintenance.

Metal separation. Removes ferrous and non-ferrous metals. Ferrous metals are separated by a magnetic overbelt separator, whereas non-ferrous metals are ejected by an eddy current separator. Large pieces of ferrous metal are removed from the process at an early stage in order to protect the subsequent process equipment. Small metal pieces and non-ferrous metals are typically separated after fine shredding to achieve higher separation efficiencies.

Metal detection. Detects any kind of metallic material. Large particles can cause malfunctions and damage process machinery. This is prevented by means of effective metal detection. Bulky metal pieces cause change in an electromagnetic field and the metal pieces are thus detected. A signal to the conveying system control unit secures immediate ejection from the system.

Compacting. Dewater coarse and fiber rejects mechanically to highest dryness. The reject material fed to the compactor is conveyed by a rotating screw and compacted in a counter-pressure unit by two hydraulically actuated pressure flaps. Wear-resistant, heavy-duty baskets retain the solids, while the filtrate flows through the holes in the baskets and is collected in a tray. The final dryness depends on the type of reject material and its fiber content.

Shredding. Sets the correct particle size. Coarse particles are reduced to the desired size by slowly rotating shafts fitted with wear-resistant cutting devices. A screen plate determines the particle size. Shredders are typically fed coarse rejects from pulping and coarse screening. The machine is easy to install and has good accessibility, and its robust design ensures reliable operation with low maintenance requirement.

Drying. Makes use of waste heat for sludge and reject drying. The pre-dewatered material is distributed evenly over a permeable belt. Hot air is blown onto the reject material from above and extracted by suction on the underside of the belt in counter-current to the reject material flow (through-air-drying). The low temperature level and long residence time ensure effective drying. Flexible use of low-grade energy (waste heat recovered from hot water or process back-end) ensures high filtrate quality and low maintenance.

Sand and heavy-particle sedimentation. Removes sand, glass and other heavy rejects by gravity. The mesh size of the high-strength filter elements determines the water quality. The units can be installed quickly into any type of channel, as well as being reliable in operation and easy to maintain due to their compact, robust design.
Converting rejects into valuable resources and energy

As a globally operating technology leader with environmental responsibility, supplying waste-to-power systems is an important mission for us.

System integration and concepts

By developing components for each process step, we also gain an understanding of how individual equipment performs best within the overall system. As a result, ANDRITZ reject systems are designed to be as lean as possible, but as strong as necessary. Installations worldwide give us the foundation on which to improve and customize equipment for each new application.

An essential part of the whole

ANDRITZ reject systems can be implemented into waste-to-power systems – a technology to provide renewable energy. ANDRITZ has many years of experience in woodyard and fuel preparation processes, drying of biomass, refining and grinding, pelleting, and with biomass boilers and gasifiers. Reject systems complete the chain of sub-systems to produce energy from pulp and paper mill waste.

Major driving forces

- No landfill permitted in the EU as from 2011
- Costs for landfill are steadily increasing
- Transport costs are extremely high for low specific weight and wet material
- Energy costs are rising steadily
- Rejects are an energy source with high calorific value
- Recovery of internal mill waste increases independency in terms of energy and costs